

TERMOARREDO "CAPRI" DIRITTO NERO OPACO

Materiale: Acciaio

Finiture: Nero Opaco RAL9005

Dimensioni: Varie

Specifiche: Materiale in Dotazione:

1 Kit di fissaggi a muro;

+ 1 valvola di sfiato

Fissaggi a muro: 3 Connessioni: 3x1/2"

codice variante cod.produttore 0774902 H.719 x L.500 x Int.450 380867 0774904 H.1150 x L.500 x Int.450 380868 0774906 H.1420 x L.500 x Int.450

Connessione Distanza da parete

Nero opaco RAL9005 - dritto

N°TUBI: 14

Codice	Altezza mm	Largh. mm	Interasse mm	Peso kg	Acque It	△T50 °C Watt	△T30 °C Watt	△T42,5 °C Watt	△T60 °C Watt	Esponente n	Resistenza Watt
380867	719	500	450	7	2,5	325	175	267	406	1,21652	300
380868	1150	500	450	10/9	3,8	488	260	400	612	1,2371	500
380869	1420	500	450	13,8	4,9	611	324	500	767	1,24316	700

I radiatori vengono testati presso laboratori accreditati secondo la norma EN-442 che determina la resa nominale fissando un ΔT a

Il $\Delta \tau$ è la differenza tra la temperatura media dell'acqua all'interno del radiatore e la temperatura dell'ambiente e viene calcolato con la seguente formula: (((T,+T_3)/2)-T_3). es: ((75+65/2)-20)= 50 °C.

Per ottenere il valore della resa termica con un $\Delta \tau$ diverso, può essere utilizzata la seguente formula:

N°TUBL 18

 $\phi_x = \phi_{a=50}^* (\Delta \tau_x / 50)^n$

 $\Psi_{\rm x} = \Psi_{\rm gatto}$ (41) (40). By seguito un esempio per calcolare la resa con Δ T 60 °C del codoc 386130: 325*(60/50)12962 406. Per ottenere il valore in **kcal/h**, moltiplicare la resa in watt per Q85984.

Per ottenere il valore in btu, moltiplicare la resa in watt per 3,412.

N°TUBI: 9

 T_{γ} = temperatura di mandata - T_{γ} = temperatura di ritorno - T_{γ} = temperatura ambiente. ϕ_x = resa da calcolare - ϕ_{ar60} = resa a Δ T 50 °C (tabella) - Δ T $_x$ = valore di Δ T da calcolare "= esponente "n" (tabella).

Min. Max 85 100